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Abstract. Ferromagnetic spin chains of a hexagonal lattice coupled by a weak antiferromagnetic interaction
J1 develop a helix arrangement if the intrachain antiferromagnetic NNN exchange J2 is sufficiently large.
We show that the classical minimum energy spin configuration is an umbrella when an external magnetic
field is applied. The scenario is dramatically changed by quantum fluctuations. Indeed we find that the
zero point motion forces the spins in a plane containing the magnetic field so that classical expectation is
deceptive for our model. Our result is obtained by controlled expansion in the low field-long wavelength
modulation limit.

PACS. 75.10.Jm Quantized spin models – 75.30.Ds Spin waves – 75.50.-y Studies of specific magnetic
materials

1 Introduction

Hexagonal spin chains weakly interacting via NN antifer-
romagnetic exchange interaction J1 forming a hexagonal
lattice are a suitable model in order to describe the mag-
netic properties of the ABX3 compounds, where A is an
alkali element, B a magnetic ion, and X a halogen [1].
A peculiar example is CsCuCl3 [2] where the NN intra-
chain interaction J0 is ferromagnetic and a Dzyaloshinsky-
Morija interaction forces the spins in the basal planes and
causes a long period spin modulation along the c-axis.
This compound was extensively investigated both theo-
retically [3–5] and experimentally [2,6–10]. Indeed this
compound shows an interesting phenomenology when an
external magnetic field parallel or perpendicular to the c-
axis is applied. Magnetic resonance [2] and magnetization
[7] as function of the external magnetic field were mea-
sured and satisfactorily explained theoretically [3–5]. The
magnetic resonance data were shown to be relied to the
lifting by quantum fluctuations of the classical infinite de-
generacy of the triangular antiferromagnetic model when
an in-plane external magnetic field is applied [3,11–13].
The plateau or the jump in the uniform magnetization
[7] induced by a field perpendicular or parallel to the c-
axis were ascribed to quantum fluctuations which cause a
reorientation of the spins [3–5].

Even though experimental data are well understood
on the basis of in-plane spin configurations [8,10] deeply
affected by quantum fluctuations a still open point is the
possible onset of out-of-plane spin patterns when a high
external magnetic field (H ' 0.5Hs, where Hs is the satu-
ration field) is applied perpendicular to the chain [14]. In
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reference [14] out-of-plane spin configurations are found
via numerical evaluation of the minimum energy spin con-
figuration of a classical spin model suitable for CsCuCl3.
An effective biquadratic exchange coupling is also pro-
posed to mimic quantum fluctuations.

Since analytic study of possible out-of-plane spin con-
figurations is not possible for the Hamiltonian model suit-
able for CsCuCl3, we consider an isotropic spin model sup-
porting the zero field configuration characterized by the
(1

3 ,
1
3 , q) order wave vector. We do not expect our results

to be conclusive in order to prove or disprove the onset of
an out-of-plane spin configurations in CsCuCl3. Anyway,
the scenario we study is of the same kind as that observed
in CsCuCl3, at least from a qualitative point of view, so
that we hope to cast a glance at the behavior of the actual
compound.

In order to separate the mechanism responsible of the
spin modulation along the chain from that forcing the
spins to rotate in the basal plane (these two mechanisms
are intrinsecally connected in the Dzyaloshinsky-Morija
interaction [14]), we consider NN and NNN intrachain
competing isotropic exchange interactions that lead to a
long period helix along the chain, even though they do not
select any plane of rotation for the spins. Note that we do
not introduce any mechanism favoring the in-plane spin
configuration.

In classical approximation (Sect. 2) we find that an
umbrella (U) configuration (where spins are spiralling on
the surface of a cone having the axis parallel to the field)
is stable with respect to a planar (P) configuration (where
spins lie in a plane containing the magnetic field). Note
that this is a consequence of the helix along the c-axis,
whereas in absence of this modulation the umbrella and
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infinite in-plane spin configurations have the same classi-
cal energy [3,12,15]. Anyway the plane of the spins in the
P phase is selected only if some anisotropy is introduced.
In Section 3 we evaluate the leading contribution of the
zero point motion energy as an expansion of the magnetic
field. We find that the classical scenario is overturned and
the U configuration is replaced by a P configuration sup-
ported by quantum fluctuations. Finally, summary and
conclusions are contained in Section 4.

2 “Classical” ground state

We consider a hexagonal lattice of ferromagnetic chains
coupled by weak antiferromagnetic interaction. We as-
sume the external magnetic field directed along a line of
in-plane NN (x-axis). The Hamiltonian we consider reads

H = −J0

∑
nδz

Sn · Sn+δz − J2

∑
nδ′z

Si · Sn+δ′z

+ J1

∑
iδ

Si · Si+δ − gµBH ·
∑
i

Si (2.1)

where 2J0 and 2J2 are the NN and NNN intrachain com-
peting exchange interactions, 2J1 is the in-plane antiferro-
magnetic exchange interaction, H is the external magnetic
field, g is the Landé factor, µB is the Bohr magneton,
n labels the spins along the ferromagnetic chains, i la-
bels the sites of each one of the three sublattices in which
the hexagonal lattice is divided. Vectors δz = (0, 0,±c),
δ′z = (0, 0,±2c) join a spin with its intrachain NN and

NNN, respectively; δ = (a, 0, 0), (− 1
2a,±

√
3

2 a, 0) join a
spin with its in-plane NN.

Strictly following the approach of reference [5] we con-
sider a long period spin modulation along the c-axis in
order to perform the continuum approximation. As for P
configurations the energy of the model becomes

H = 2J0NS
2

[
− 1−

J2

J0
+

1

L

∫ L

0

E(z)dz

]
(2.2)

where

E(z) =
1

6

3∑
j=1

{
c2
(

1 + 4
J2

J0

)(
dφj

dz

)2

−
c4

12

(
1 + 16

J2

J0

)[(
dφj

dz

)4

+

(
d2φj

dz2

)2]
+

c6

360

(
1 + 64

J2

J0

)[(
dφj

dz

)6

+ 9

(
dφj

dz

)2(
d2φj

dz2

)2

+

(
d3φj

dz3

)2

− 2

(
dφj

dz

)3(
d3φj

dz3

)]}

+
J1

J0

{
cos(φ1(z)− φ2(z)) + cos(φ2(z)

− φ3(z)) + cos(φ3(z)− φ1(z))

− h
[

cos(φ1(z)) + cos(φ2(z)) + cos(φ3(z))
]}

(2.3)

with h = gµBH/6J1S; φ1(z), φ2(z), φ3(z) are the an-
gles between the spins of the three sublattices and the
external magnetic field, respectively. Note that the con-
tinuum expansion in reference [5] was limited to the first
order whereas an expansion up to third order is required in
our model to get significant results. The minimum energy
configuration is obtained by solving the Euler-Lagrange
equations. The first equation reads

1

3

{
c2
(

1 + 4
J2

J0

)
d2φ1

dz2
−
c4

2

(
1 + 16

J2

J0

)

×

(
dφ1

dz

)2(
d2φj

dz2

)
+

c6

120

(
1 + 64

J2

J0

)[
5

(
dφ1

dz

)4

×

(
d2φ1

dz2

)
+ 3

(
d2φ1

dz2

)3

+ 4

(
dφ1

dz

)(
d2φ1

dz2

)(
d3φ1

dz3

)
−

(
dφ1

dz

)2(
d4φ1

dz4

)]}

+
J1

J0

[
sin(φ1(z)− φ2(z))

+ sin(φ1(z)− φ3(z))− h sin(φ1(z))
]

= 0. (2.4)

The other two Euler-Lagrange equations are obtained by
cyclic permutation of sublattice labels.

For h = 0 the solution is an incommensurate regular
helix given by

φj(z) = φj + q0z (2.5)

where φ1 = φ, φ2 = φ − 2π
3 , φ3 = φ + 2π

3 . The energy
density reads

E(z) =
1

2

[
(cq0)2

(
1 + 4

J2

J0

)
−

1

12
(cq0)4

(
1 + 16

J2

J0

)
+

1

360
(cq0)6

(
1 + 64

J2

J0

)]
−

3J1

2J0
· (2.6)

Minimization of the energy leads to the helix wave vector
in the continuum approximation

(cq0)2 = 8ε

(
1−

10

3
ε

)
+O(ε3) (2.7)

where ε = −(1
4 + J2

J0
) > 0. Note that the exact helix wave

vector is [16]

cos(cq0) =
1

1 + 4ε
(2.8)

that agrees to the approximate solution (2.7) withinO(ε3).
For h 6= 0 we look for solutions like

φj(z) = φj + qz + a1h sin(qz + φj)

+ a2h
2 sin(2(qz + φj)) + ... (2.9)
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for j = 1, 2, 3. Substitution of the series solution (2.9) in
(2.4) leads to

a1 =
−

2

3

1 +
128J0

9J1
ε2
(

1−
19

3
ε
) (2.10)

a2 = −
1

3
a1

1 +
9

4
a1

[
1 +

256J0

9J1
ε2
(

1−
22

3
ε
)]

1 +
512J0

9J1
ε2
(

1−
28

3
ε
) (2.11)

and

E(z) =
1

2

[
(cq)2

(
1 + 4

J2

J0

)(
1 +

1

2
a2

1h
2

)
−

1

12
(cq)4

(
1 + 16

J2

J0

)(
1 +

7

2
a2

1h
2

)
+

1

360
(cq)6

(
1 + 64

J2

J0

)(
1 +

31

2
a2

1h
2

)]
−

3J1

2J0
+

3J1

2J0
a1

(
1 +

3

4
a1

)
h2. (2.12)

Minimization with respet to q leads to the magnetic field
dependence of the helix wave vector. We obtain

(cq)2 = (cq0)2 − 24ε

(
1−

28

3
ε

)
a2

1h
2 (2.13)

with cq0 given by (2.7). The minimun energy is

E
(P )
0 = 2J0NS

2

[
−

3J1

2J0
− 1−

J2

J0
− 8ε2(1− 4ε)−

J1

2J0
h2

+
80

9
ε2
(

1−
44

5
ε

)
h2 −

4096J0

27J1
ε4h2

]
. (2.14)

We stress that all non vanishing h dependent contributions
for vanishing ε are taken into account in equation (2.14)
[3]. Note that infinite planar spin configurations have the

same energy (2.14). Indeed E
(P )
0 is independent of φ the

arbitrary phase of the first sublattice (see Eqs. (2.9, 2.5)).
The classical energy of the umbrella configuration is

E
(U)
0 = 2J0NS

2

{
−

3J1

2J0
− 1−

J2

J0
−

8ε2

1 + 4ε
−

J1

2J0
h2

+
8ε2

9(1 + 4ε)

[
1 +

J0

J1

16ε2

9(1 + 4ε)

]−2

h2

+
J0

J1

128ε4

81(1 + 4ε)2

[
1 +

J0

J1

16ε2

9(1 + 4ε)

]−2

h2

}
(2.15)

where the spiral wave vector is given by

cq = cos−1

(
1

1 + 4ε

)
(2.16)

and the apex cone angle is

θ = cos−1

h

3

1 +
J0

J1

16ε2

9(1 + 4ε)

· (2.17)

In the limit of long period modulation (ε→ 0) the energy
of the U phase becomes

E
(U)
0 = 2J0NS

2

[
−

3J1

2J0
− 1−

J2

J0
− 8ε2(1− 4ε)−

J1

2J0
h2

+
8

9
ε2
(
1− 4ε

)
h2 −

128J0

81J1
ε4h2

]
. (2.18)

As one can see the P phase is unstable with respect to the
U phase when a spiral along the c axis is present. Indeed

[E
(U)
0 −E

(P )
0 ]/2J0NS

2 ' −8ε2h2.

3 Zero point motion energy

In order to get the leading zero point motion contribution
we have worked out the spin wave analysis of the model
(2.1). Such analysis is the direct generalization of our pre-
vious results obtained for a 3D hexagonal antiferromagnet
[3]. The bilinear Hamiltonian obtained from equation (2.1)
by the standard spin-boson transformation is the same as
equation (A.6) of reference [3] with η = η0 = 0, pro-
vided that a term 4J2S(1− cos(2cqz)) is added in the curl
brakets of the first term. We may perform analytic cal-
culations only for J2/J0 > −1/4 otherwise the spin wave
excitations in the P configuration become unstable. The
extreme value that assures collinear configurations along
the c axis is ε = 0. In evaluating the zero point motion
contribution we assume ε = 0 since the long period mod-
ulation along c axis is expected to lead to vanishing con-
tributions for vanishing ε. For J2/J0 > −1/4 one has

∆E
(P )
0 = 2J0NS

(
−

3J1

2J0
− 1−

J2

J0

)
+

1

2

3∑
s=1

∑
q

~ωsq

= 2J0NS

(
−

3J1

2J0
− 1−

J2

J0

+
1

3π3

∫ π

0

∫ π

0

∫ π

0

dxdydz

3∑
s=1

√
λs

)
(3.1)

where λs are the roots of the cubic equation

λ3 − aλ2 + bλ− c = 0 (3.2)

with

a = 3

[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]2

+ 2

(
3J1

2J0

)2

s1|γ|
2 (3.3)
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b =

[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]2

×

{
3

[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]2

− s2

(
3J1

2J0

)2

|γ|2
}

+

(
3J1

2J0

)2

×

[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]
×

{
2s1

[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]
|γ|2

+
3J1

4J0

(
s2 − s

2
1

)(
γ3 + γ∗3

)}
−

(
3J1

2J0

)2{
3

[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]2

|γ|2 +
3J1

2J0
s1

[
1− cos z

+
J2

J0

(
1− cos(2z)

)
+

3J1

2J0

](
γ3 + γ∗3

)
−

(
3J1

2J0
s1

)2

|γ|4
}

(3.4)

c =

{[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]3

−s2

(
3J1

2J0

)2[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]
|γ|2

+
1

2
(s2 − 1)

(
3J1

2J0

)3(
γ3 + γ∗3

)}
×

{[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]3

−3

(
3J1

2J0

)2[
1− cos z +

J2

J0

(
1− cos(2z)

)
+

3J1

2J0

]
|γ|2

+

(
3J1

2J0

)3(
γ3 + γ∗3

)}
(3.5)

where

s1 = −
3

2
+

1

2
h2 , s2 =

3

4
+

1

4
h2ρ(h, φ) (3.6)

γ =
1

3

(
ei

2x
3 + 2e−i

x
3 cos y

)
(3.7)

ρ(h, φ) =

4− 4h cosφ(4 cos2φ− 1) + h2(16 cos2φ− 3)− 6h3cosφ+ h4

1− 2h cosφ+ h2
·

(3.8)

Note the dependence of a, b, c and, consequently, of λs, on
φ. This is because the zero point motion lifts the infinite

degeneracy of the classical energy. The zero point motion
for the U phase is

∆E
(U)
0 = 2J0NS

(
−

3J1

2J0
− 1−

J2

J0

)
+

1

2

∑
q

~ωq

= 2J0NS

(
−

3J1

2J0
−1−

J2

J0
+

1

π3

∫ π

0

∫ π

0

∫ π

0

dxdydz
√
sd

)
(3.9)

where

s = 1− cos z +
J2

J0

(
1− cos(2z)

)
+

3J1

2J0

+
J1

J0

(
1−

h2

6

)(
2 cosx cos(2y) + cos(2x)

)
(3.10)

d = 1− cos z +
J2

J0

(
1− cos(2z)

)
+

3J1

2J0

[
1−

1

3

(
2 cosx cos(2y) + cos(2x)

)]
.(3.11)

The leading contributions in the zero point motion respon-
sible of the stabilization of the P phase with respect to the
U phase are proportional to h2 [13,17] so we neglect terms
of order h2o(ε). In particular, for J2/J0 = −1/4 and low
field one obtains

∆E
(P )
0 = 2J0NS

[
−

3J1

2J0
−

3

4
+ c

(P )
0 + c

(P )
2 h2

+ c
(P )
3 h3 cos(3φ) + O(h4)

]
(3.12)

where

c
(P )
0 =

1

3π3

∫ π

0

∫ π

0

∫ π

0

dxdydz

3∑
s=1

√
λs (3.13)

c
(P )
2 =

1

6π3

∫ π

0

∫ π

0

∫ π

0

dxdydz

3∑
s=1

µs√
λs

(3.14)

c
(P )
3 =

1

6π3

∫ π

0

∫ π

0

∫ π

0

dxdydz

3∑
s=1

σs√
λs

(3.15)

with

λ1 =

[
1

2

(
1− cos z

)2
+

3J1

2J0

(
1 + 2aq

)]
×

[
1

2

(
1− cos z

)2
+

3J1

2J0

(
1− aq

)]
(3.16)

λ2 =

[
1

2

(
1− cos z

)2
+

3J1

2J0

(
1 +

1

2
aq +

√
3

2
bq
)]

×

[
1

2

(
1− cos z

)2
−

3J1

2J0

(
1− aq −

√
3bq
)]

(3.17)
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λ3 =

[
1

2

(
1− cos z

)2
+

3J1

2J0

(
1 +

1

2
aq −

√
3

2
bq
)]

×

[
1

2

(
1− cos z

)2
−

3J1

2J0

(
1− aq +

√
3bq
)]

(3.18)

aq =
1

3

(
cos

2x

3
+ 2 cosy cos

x

3

)
bq =

2

3
sin

x

3

(
cos

x

3
− cos y

)
(3.19)

µs =

(
3J1

2J0

)2{(
a2
q + b2q

)
λ2
s +

3

2

(
3J1

2J0

)3[(
3J1

2J0

)(
a2
q + b2q

)2
−

(
1

2
(1− cos z)2 +

3J1

2J0

)
aq(a

2
q − 3b2q)

]
λs

−

[(
1

2
(1− cos z)2 +

3J1

2J0

)
(a2
q + b2q)−

3J1

2J0
aq(a

2
q − 3b2q)

]
×

[(
1

2
(1− cos z)2 +

3J1

2J0

)3

− 3

(
3J1

2J0

)2

−

(
1

2
(1−cos z)2+

3J1

2J0

)
(a2
q+b2q)+2

(
3J1

2J0

)2

aq(a
2
q−3b2q)

]}
×
(

3λ2
s − 2a0λs + b0

)−1

(3.20)

σs =

(
3J1

2J0

)2{[
1

2
(1− cos z)2 +

3J1

2J0

]3

− 3

(
3J1

2J0

)2[
1

2
(1− cos z)2 +

3J1

2J0

]
(a2
q + b2q)

+ 2

(
3J1

2J0

)3

aq(a
2
q − 3b2q)−

[
1

2
(1− cos z)2 +

3J1

2J0

]
λs

}
×

{[
1

2
(1− cos z)2 +

3J1

2J0

]
(a2
q + b2q)

−
3J1

2J0
aq(a

2
q − 3b2q)

}(
3λ2

s − 2a0λs + b0

)−1

(3.21)

with

a0 = 3

{[
1

2
(1− cos z)2 +

3J1

2J0

]2

−

(
3J1

2J0

)2

(a2
q + b2q)

}
(3.22)

b0 = 3

{[
1

2
(1− cos z)2 +

3J1

2J0

]4

−
9

4

(
3J1

2J0

)2[
1

2
(1− cos z)2 +

3J1

2J0

]2

(a2
q + b2q)

+
1

2

(
3J1

2J0

)3[
1

2
(1− cos z)2 +

3J1

2J0

]
aq(a

2
q − 3b2q)

+
3

4

(
3J1

2J0

)4

(a2
q + b2q)

2

}
. (3.23)

Numerical evaluation of integrals appearing in equations
(3.13–3.15) for J1/J0 = 0.175, a value appropriate to
CsCuCl3, gives

∆E
(P )
0 = 2J0NS

[
− 0.025155 + 0.248h2

+0.237h3 cos(3φ) +O(h4)
]
. (3.24)

For the U phase one has

∆E
(U)
0 = 2J0NS

[
−

3J1

2J0
−

3

4
+ c

(U)
0 + c

(U)
2 h2 +O(h4)

]
(3.25)

where

c
(U)
0 =

1

π3

∫ π

0

∫ π

0

∫ π

0

dxdydz
√
sd (3.26)

c
(U)
2 = −

1

18π3

(
3J1

2J0

)∫ π

0

∫ π

0

∫ π

0

dxdydz

×(2 cosx cos y + cos 2x)
√
d/s (3.27)

s =
1

2

(
1− cos z

)2
+

3J1

2J0

[
1 +

2

3

(
2 cosx cos y + cos 2x

)]
(3.28)

d =
1

2

(
1− cos z

)2
+

3J1

2J0

[
1−

1

3

(
2 cosx cos y + cos 2x

)]
.

(3.29)

Numerical evaluation gives c
(U)
0 = c

(P )
0 = 0.987345 as ex-

pected since it is the magnetic field that selects between
P and U phases [13,17]. So we have

∆E
(U)
0 = 2J0NS

[
− 0.025155 + 0.65h2 +O(h4)

]
. (3.30)

The difference between the energy of the U and P phase
is

∆E = E(U) −E(P ) = 2J0NS
2 (3.31)

×

[
− 8ε2

(
1−

28

3
ε

)
h2 +

12160

81

J0

J1
ε4h2 +

0.40

S
h2

]
.

Extrapolation of equation (3.31) shows that P-phase is

stable with respect to U-phase for ε <
√

0.40
8S . For instance,

(cq0) ' π
2 for S = 1/2 and (cq0) ' 0.88 for S = 5/2.

This means that the P phase is always stable for helices
characterized by a long period wave vector. We recall that
ε ' 10−3 is required to have the helix pitch observed in
CsCuCl3.

In order to test the stability of the commensurate pla-
nar phase, characterized by a helix wave vector (1

3 ,
1
3 , 0) in

r.l.u., with respect to the incommensurate umbrella phase
for any applied field we evaluate the U phase energy by
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Fig. 1. The difference between the energy of the incommensu-
rate umbrella phase and the commensurate planar phase versus
magnetic field for parameters suitable for CsCuCl3

means of equations (2.15, 3.9) valid for any field. We com-
pare this energy with that obtained for the commensurate
P phase

E(P )

(
1

3
,

1

3
, 0

)
= 2J0NS

2

[
−

3J1

2J0
− 1

−
J2

J0
−

J1

2J0
h2

]
+∆EP0 (3.32)

where ∆E
(P )
0 is given by equation (3.1). The difference

between the energies of the U (incommensurate) phase
and the P (commensurate) phase is shown in Figure 1
versus field form zero to saturation field. The commen-
surate P phase is stable over the whole range of the
applied magnetic fields except for a very narrow region
close to the origin. Indeed at h = 0 the incommen-
surate U phase is stable, as expected, because ∆E =

[E(P )
(

1
3 ,

1
3 , 0
)
− E(U)

0 ]/2J0NS
2 = 8ε2

1+4ε ' 8× 10−6. How-

ever, at h '
√

20Sε the commensurate P phase becomes
stable and it remains stable to the saturation field.

So we conclude that the incommensurate U phase is
replaced by a suitable planar phase for any magnetic field.
Indeed equation (3.31) proves that an incommensurate P
phase is the minimum energy configuration in the low field
limit where analytic description of the incommensurate P
phase is possible. Moreover the commensurate P phase is
stable with respect to the incommensurate U phase for
non vanishing values of h.

A fortiori the out-of-plane U phase should be excluded
if some planar anisotropy would be present. Anyway the
spins are forced in a plane containing the magnetic field by
quantum fluctuations and planar anisotropy only chooses
the c plane. We stress that the out-of-plane phase is
ruled out by quantum fluctuations even though any easy-
plane anisotropy term is absent. On the contrary out-of-
plane spin configurations are obtained in [14] where both
DM interaction and easy-plane exchange anisotropies are
present. This is not surprising if one neglects quantum

fluctuations because the applied magnetic field favors um-
brella like configurations so that a sufficiently high mag-
netic field may overcome the effect of the anisotropic
terms, if they are not too large. Indeed the out-of-plane
configuration is drastically reduced and finally suppressed
by an increasing exchange anisotropy [14]. On the other
hand we think that the effective biquadratic exchange as-
sumed to mimic quantum fluctuations [14] could be a poor
approximation of quantum effects. Indeed the biquadratic
term does not change substantially the classical scenario.
This poor treatment of quantum fluctuations could be the
origin of the surviving of the out-of-plane configuration
found in reference [14]. In particular, we have tested the
above phenomenological treatment of quantum fluctua-
tions by an analytical series expansion of the ground state
in powers of the field for the 2D triangular antiferromagnet
(TAF). We find that the difference between the energies
of umbrella and planar configurations for the expansion
at low field of the zero point motion [17] is

∆E = 2J1NS
2

[
0.082

2S
h2 +

0.039

2S
h3 + ...

]
(3.33)

to be compared with the same differnce obtained expand-
ing the phenomenological ground state (13) of reference
[14]

∆E = 2J1NS
2

[
3J2

4J1
h2 −

J2

2J1
h3 + ...

]
. (3.34)

Note that J2 in (3.34) is the strength of the biquadratic
exchange. As one can see the quadratic term in h2 may be
recovered assuming J2 = 0.055J1/S but the coefficient of
h3 has an opposit sign in equations (3.33, 3.34). This casts
some doubt about the reliability of the phenomenological
treatment of quantum fluctuations [14].

4 Summary and conclusions

We have investigated the possibility of out-of-plane spin
configurations containing the external magnetic field per-
pendicular to the c axis of a hexagonal lattice of spin
chains weakly coupled by an antiferromagnetic exchange
interaction J1. The intrachain NN J0 and NNN J2 inter-
actions are ferro- and antiferromagnetic, respectively. We
consider values of J2/J0 . −1/4 so assuring a long period
spin modulation along the c axis. In Section 2 we evalu-
ate the classical energy of the umbrella (U) phase and a
planar (P) phase. We find that the U phase is stable with
respect to infinite degenerate P configurations. Note that
U and P phases have the same energy when no modulation
along the c axis is present [3]. In Section 3 we evaluate the
zero point motion energy at the leading order in 1/S. The
classical scenario is overturned by quantum fluctuations
and P configuration is stabilized. We have obtained these
results by a controlled expansion for low magnetic field
and long period modulation.

However, we expect that the stability of the P phase is
assured even for high values of the magnetic field. Indeed
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the energy of a commensurate three sublattice configura-
tion characterized by a wave vector (1

3 ,
1
3 , 0) in r.l.u. is cer-

tainly higher than the energy of the true P configuration.
Notwithstanding we find that even such a rough treatment
of the energy of the P phase is lower than the energy of
the U phase easy to evaluate for any field. So we conclude
that quantum fluctuations stabilize the P phase not only
at low field but also at high field. We are not able to lo-
calize the possible incommensurate-commensurate (IC-C)
field induced phase transition between planar configura-
tions since we are able to give a controlled description of
the IC phase only at low fields. Note that we have ne-
glected any easy-plane anisotropy favoring the c planes.
Such anisotropy is often present in ABX3 compounds and
in particular in CsCuCl3 where the mechanism producing
the long period spin modulation and part of the easy-plane
anisotropy originates from the Dzyaloshinsky-Morija in-
teraction. The incommensurate helix observed in this com-
pound is characterized by the wave vector (1

3 ,
1
3 , 0.014) [6].

On the basis of our analysis where easy-plane anisotropy
is not considered we think that quantum fluctuations play
a crucial role in forcing the spins into a plane contain-
ing the applied magnetic field. This could be the reason
because the experimental data of CsCuCl3 are satisfacto-
rily described in classical approximation disregarding the
out-of-plane spin configuration [5].

This research was supported in part by Consiglio Nazionale
delle Ricerche.
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